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ABSTRACT 

A formal solution of a linear geostrophic adjustment problem for the baroclinic atmosphere is derived. On the 
basis of this solution, the adjustment toward balance in primitive equation models is discussed with respect to its 
dependence on scale in space and time, and also with respect to the processes by which the adjustment takes place, 
that is, the damping and dispersion of the gravitational wave energy. Throughout the discussion, the effect of finite- 
difference approximations is considered. Finally, a numerical experiment is described that illustrates some of the 
results from the theoretical investigations. 

1 .  INTRODUCTION 

The first discussion of the phenomenon which later has 
been named geostrophic adjustment is due to  Rossby 
(1938). He considered a straight parallel current of finite 
width suddenly generated in an unlimited homogeneous 
ocean, and he showed how the velocity field and the mass 
field would become adjusted to each other so that a 
balance between the horizontal pressure force and the 
Coriolis force was achieved. Cahn (1945) later ‘gave a 
complete solution of the initial value problem, and Bolin 
(1953) extended Cahn’s solution to  a baroclinic ocean. 
Their solutions consist of a transient part, the inertia- 
gravitational waves, and a stationary part, a straight 
current and a pressure gradient in geostrophic balance 
with each other. The wave energy is allowed to disperse 
over an infinite domain, so that the amplitude eventually 
becomes negligible. The solutions were all based on linear 
perturbation theory. Blumen (1967) and Blumen and 
Washington (1969) have tried to  extend these earlier 
studies to more general cases. 

With the development of primitive equation models for 
weather prediction, it became important to have initial 
wind and mass fields that are in balance. How to define 
and derive this balance has been studied in a number of 
papers. A thorough study of the problem is given by 
Phillips (1960). We shall here mention only the fact that 
if the balance is imperfect, the model will develop inertia- 
gravitational waves, usually referred to as [‘noise.” It 
has been demonstrated, however, that the models may 
gradually develop a better balance during the integration. 
The balance needed in these models is much more com- 
plicated than in the simple linear case just described. 
Still, there is reason to believe that the mechanism by 
which the balance is achieved is basically of the same kind. 

Proposed methods for obtaining the initial balance 
involve running the model forward and backward at  
initial time, utilizing a special numerical device to  damp 
the noise. These methods are strongly related to  the 
adjustment that takes place during a forward integration. 
Variants of this method involve restoring the mass field 
(Nitta and Hovermale 1967), and also more complicated 
manipulations of the nondivergent and the irrotational 
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wind fields (Miyakoda and Moyer 1968). 
Using the potential vorticity theorem for a rotating 

shallow homogeneous fluid, Obukhov (1949) and Washing- 
ton (1964) find that the height gradients may adjust 
themselves to the winds, or vice versa, depending on the 
horizontal scale. Washington introduces what he calls 
critical wavelength, which turns out to be about 15,000 km 
for middle latitudes. For wavelengths shorter than the 
critical, the heights are adjusted to the winds. 

I n  this paper, we shall discuss all these points somewhat 
more in detail, and we shall extend the discussion to a 
baroclinic atmosphere. For this purpose, we shall derive a 
formal solution of a perturbation problem similar to those 
studied by Cahn and Bolin, but without giving any 
numerical solutions. Although some of the results we shall 
derive may be looked upon as an extension to the atmos- 
phere of Bolin’s study, we shall have our attention mainly 
directed toward primitive equation models for weather 
prediction. For this reason, we shall also be discussing the 
changes to be expected from the introduction of a grid 
representation in space and time. 

9.  SOLUTION OF THE LINEAR ADJUSTMENT PROBLEM 
The basic flow is assumed to  be parallel to the x-axis 

(not necessarily in the zonal direction), and in geostrophic 
balance with the geopotential so that u=-fl (d@y), 
wheref, the Coriolis parameter, is assumed to be a con- 
stant. Here and later, the bar indicates unperturbated 
quantities. Pressure, p ,  is the vertical coondinate. The 
perturbation, described by the variables u, v, 9, and 
u=dp/dt will be assumed to vary with‘y, p ,  and i, but not 
with x. The perturbation equations are 

(au/at) -fv=O, 

(avlat) +f u + ( w a y )  = 0 , 

and 

where Z = -Za In e p p .  The boundary conditions on the 
horizontal boundaries are (&$/at) -CUw=O for p=po (1000 
mb) and u=O for p=O. Here, 5 and CU are the stability 
and the specific volume of the unperturbated state. 
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Terms like va';;/dy, wa'ii/ap, va2$3yap, and va?Jdy have 
been neglected in equations (1) and in the equation for 
the lower boundary condition. This is justified if the basic 
flow, Z, is weak a t  all levels. Similarly, we shall assume 
that the variation of S with y can be neglected so that Z 
is a function of p only. With these assumptions, the 
solution of the perturbation problem is independent of 
the basic flow. 

Assuming that the variation with y and t for all variables 
is given by the common factor exp(iky+iut), where 
k = 2 ~ / L  and u=~IT/T ,  the perturbation equations become 

i ~ - j V = O ,  

iu( a4 Jdp) + Sw = 0,  

ikv+ (dwlbp) = O ,  

iuv + f ~  + ik4 = 0, 

and 

and the boundary conditions become iu+-&=O for p= 
po and w=O for p=O. We assume that all equations in 
(2) have been divided by exp(iky+iut), so that the vari- 
ables are no longer functions of y and t. 

At this point, it is important to note that for u=O, the 
system (2)  has the solution v=w=O and u=-ikj-lb 
where u and 4 are functions of p .  This solution is seen 
to be a stationary wind field in geostrophic balance with 
a geopotential field. 

In  order to derive the other solutions, we eliminate 
from (2) all variables but 4, and get 

(3) 

and the boundary conditions, (&$lap) + G/Z)$=O for 
p=po and (b$/bp)=O for p=O. 

The last boundary condition (for p=O) is the one 
given by Benwell and Bretherton (1968). It follows from 
u=O, assuming that S remains bounded as p-0. There are 
different opinions about the correct upper boundary con- 
ditions to use (Lindzen et al. 1968). Since we in this paper 
shall be concerned mainly with weather prediction models, 
it is sufficient to realize that the vertical structure in 
these models is described by a finite number of levels, 
and the differential equation (3), therefore, is substituted 
by a number of ordinary equations. 

In  equation (3), the coefficient in front of 4 has the 
dimension T2L-2, and we shall, therefore, write (3) as 

(4) 

where 
C 2 = ( f -  j2)k-2. (5) 

Inspecting the initial perturbation equations, we realize 
that c is the phase velocity of a gravity wave on a non- 
rotating earth. If the values of c can be found from equa- 
tion (4), the frequency of the inertia-gravitational wave 
,can be derived from (5). 

Equation (4) and its boundary conditions are seen to 
form a Sturm Liouville type boundary value problem 

(see, for instance, Morse and Feshbach 1953). It defines 
an infinite number of discrete eigenvalues. We shall call 
these values c;' where n= 1,  2, . . . , and where we have 
assumed that c-,2<c,-,2,. The corresponding solutions of 
(4), &, are known to  be orthogonal, in the sens.8 that 

and any function of p ,  F say, may be expressed by a series 
of the functions in the interval between 0 and p o :  

n 
J'=Can$n 

where 

It is assumed that the eigenfunctions have been normalized 
in the sense that 

&dp = 1. r 
We shall now construct the formal solution of (l), but 

f k t  we must decide what the boundary conditions are in 
the lateral direction. As already mentioned in the intro- 
duction, Cahn (1945) and Bolin (1953) gave the solutions 
for an infinite plane. A similar approach in case of the 
solution we are considering here would lead to a Fourier 
integral representation. However, since we are going to 
concern ourselves mainly with numerical models, a finite 
domain seems to be more realistic. This would lead to  a 
Fourier series representation of the solution. Models are 
either solved for the whole globe, in which case the lateral 
boundary conditions are basically cyclic, or they are solved 
for a domain bounded by vertical walls where special 
conditions have to  be applied. Since cyclic conditions are 
simpler for our purpose, they will be used here. 

Accordingly, we shall assume that all dependent vari- 
ables have the same values for y and y+20. The general: 
solution of (1) may then be written 

k 
'$=E [k+&'n(&,k exp(iun,kt) 

f B n , k  exp(-i.n,kt))] exp(iky), 

~n 
u=& [ - f i j - ' + k + ~  i;fk-'c,*&(An,k exp(iu,kt) 

+ B n , k  exp(-iun,k t ) ) ]  exP(iky), 
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A constants, and C$k is a function of p only. Here, k may 

have discrete values defined *by k=*ZD-', Z=O, &I,  
k2,. . . . The terms containing C$k represent the stationary 
solution mentioned earlier. This solution does not belong 
to the eigensolutions derived from (4) and must be added 
separately in order to get the complete general solution of 
the system (1). 

The values of A , , ,  B,,,, and $k can be determined from 
the initial values of 4, u, and v. (Since w at any time may 
be derived from v, using the equation of continuity, they 
cannot be prescribed independently.) In  order to do so, 
we make t = O  in the solutions, multiply by exp(-iky), 
and integrate between the limits -D and D. We then get 

A 

and 

Here, c$;'), u;'), and vi'), which are functions of p only, are 
seen to be the coefficients in the Fourier series expansion 
of the initial values of the variables. 

To proceed, we multiply the equations (7) by +,, and 
integrate from 0 to p,; 

and 
[ Vio' &dp=-Un, kk-'Ci2(An, k - B n ,  t) 

A 
Solving for An,k,Bn,k, and C$k, we finally get 

and 

The integral on the left-hand side of (9) is seen to be the 

A 
coefficient in an expansion of qh in terms of the functions 
4*. Therefore, (6) together with (9), (lo), and (11) 
represent our solution of the initial value problem. A 
basically similar solution has been used by Ogura and 
Charney (1962) in their discussion of a mesoscale model. 

3. SOLUTION FOR FINITE DIFFERENCES 

Before proceeding to a general discussion of the solution 
just given, we shall see what changes a grid-point represen- 
tation of the variables may cause in the solution. As 
already mentioned in connection with the upper boundary 
condition, a grid-point representation in the vertical co- 
ordinate gives a set of ordinary homogeneous equations to 
solve, instead of the differential equation (3). The number 
of eigenvalues will be limited and, in general, corresponds 
to the number of grid points (levels). To each eigenvalue 
corresponds a set of grid-point values, the eigensolution. 

There are numerous widely different modeling tech- 
niques in use for the vertical structure of weather predic- 
tion models. However, we do not want to tie our discussion 
to a particular model, and we shall, therefore, consider 
only the continuous vertical solution described by the 
eigenfunctions 4nJ since many of the properties of these 
functions can be expected also of the eigensolutions for a 
discrete model. We shall mention some of these properties 
which are of importance for our discussion, but we refer 
the reader to  Morse and Feshbach's book (1953) for the 
proofs. First, the eigenvalues are all positive if T>O for 
all values of p .  Second, the eigenfunctions, &, will change 
sign n-1 times as p increases from 0 to  p, .  Therefore, 
when a function is expanded in a series of (P~ ,  the first 
term will give mostly the mean vertical character, while 
the other terms will give more and more of the details as 
n increases. 

Concerning the effect of a horizontal grid-point repre- 
sentation, we shall be more specific, since we shall assume 
that all variables are given in the same grid points and 
that the derivatives are approximated by centered differ- 
ences. Other schemes are in use, but most of them have 
basically the same effect on the solution as the one dis- 
cussed here. Since the variation in the horizontal direction 
has been expressed by a Fourier series, we need only 
study the effect of the finite-difference approximatioI1 on 
one harmonic component, say e"u. For the first space 
derivative, we get (d/dy)eiks=ik'efku where 

k' = (Ay)-l sin (k  Ay) , (13) 

and we can obviously get the solutions for the finite- 
difference case by changing k to k' in equations (2) to 
(11)- 

Next we shall consider the effect of finite differences in 
time. It is readily understood that a centered time step 
could be treated in the same way as the centered space 
difference, since we have assumed a harmonic time varia- 
tion for each component of the solution. Therefore, we 
can simply substitute u by (At)-I sin(a'At) in equations 
(2)  to ( 5 ) ,  and from ( 5 )  we then get 
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(TI= (At)-l a r c ~ h [ ~ + k ~ c ~ ) ~ / ~ A t ] ,  (14) 

where we only use the value in the first quadrant, thus 
disregarding the so-called computational mode (Kurihara 
1965). In  the final solutions (6), (9), (lo), and (ll), the 
exponential functions will be changed to exp( f iu’n ,k  rat) , 
while (Tw$ elsewhere has the value given by (5). Here, T is 
the number of time steps. Thus, the time-dependent part 
of the solution will consist of waves with no damping of 
the amplitude, just as in the continuous case, but the 
speed of propagation will be different. The usual linear 
stability criterion is tied to equation (14), which gives 
real values of u’ only if v + k 2 c 2 )  1/2At< 1. 

As already mentioned, selective damping of the high 
frequencies may deliberately be introduced in numerical 
models by certain types of time-difference schemes. One 
such scheme is the “E uler-back\vsrd,” which recently 
has become very popular (Kurihara 1965). We shall, 
therefore, investigate also the effect of this scheme on the 
solution. 

The Euler-backward time step consists of one pre- 
liminary forward step, which thereafter is substituted by 
an adjusted step. Assuming that the time variation is 
harmonic or exponential, a forward step would change 
all variables by a factor r*, where r* in general is complex. 
Similarly, the following adjusted step mould change the 
variables by a factor r.  Introducing this in (l) ,  we get 
for the adjusted step 

r-1 
- u - r*fv = 0, At 

r-1 
- At v+r*.fu+ir*k+(), 

and 

and for the boundary conditions -(r-l/At)+--r*Zuw=O for 
p = p ,  and r*w=O for p=O. Dividing these equations by 
r* we get the same form as in (2), and by elimination of 
all the variables but 4, we derive essentially the same 
boundary value problem as (4), but (5) is substituted by 

’ A similar set of equations defining the preliminary 
forward step may be derived from (1) simply by substitut- 
ing (r*-l)At-I for iu in (2), and from;these equations 
we get 

ElAination of r* gives 

r= 1 f iAt ( k2c2 +y) ’/’- (At)’( k2C2 +f”). 
This formula is similar to the one derived $by Kurihaqa 
(1965) for the barotropic atmosphere. 

Writing r=R exp(iu’At), we get 

R2= 1 - (At) ’( k22+j2) + (A t )  ( k2c2+f2) ’. (18) 

R is the darqping factor associated with one time-step, 
provided the stability criterion is fulfilled. Similarly, we 
get for the new frequency 

Since in this case (15) takes the place of (2), we obviously 
can derive the complete solution from the expressions (6) 
to (11) by changing the exponential function to R;,k 
exp ( f iu&krAt), where R ,  k and Uh,k are derived from (18) 
and (19), using the appropriate values of cn and k. 

4. ADJUSTMENT TOWARD BALANCE 
IN NUMERKAL MODELS 

The assumptions underlying the problem just consid- 
ered-a weak basic flow, perturbation independent of 2, 
etc.-are rather special, and we would not generally ex- 
pect them t o  be true in the real atmosphere or in a nu- 
merical weather prediction model. Instead, we must con- 
sider a balance between wind and mass field which is 
much more complicated than the geostrophic equilibrium 
we have considered: the fields are strong and curved, and 
generally transient; the balanced wind field is no longer 
nondivergent, but contains a small but significant irrota- 
tional part (Phillips 1960). Nevertheless, we feel justified 
in assuming that an adjustment takes place in a manner 
very similar to  the one considered earlier in this paper. 
More specifically, we believe that the solution to the 
general initial value problem analogous to (6), if  it could 
be derived, would consist, of two parts, the one being the 
inertia-gravitational waves with high frequencies and the 
other the balanced mass and wind fields which also are 
transient, but with much lower frequency. A crucial point 
is whether the dependence on scale and latitude which we 
find in our solution takes place also in the general case. 
We shall assume that this is true a t  least to  some extent, 
and we shall later describe some experiments that support 
this assumption. 

I n  Cahn’s (1945) and Bolin’s (1953) solutions, the wave 
energy could disperse over an infinite domain. This is no 
longer the case with the solution we consider, since we have 
assumed a finite domain. Energy may very well disperse 
from a source area, and this will bring the fields in the 
source area closer to the balance. However, the total 
wave energy integrated over the whole domain will be 
conserved as long as we consider the continuous solution, 
and also the finitedifference solution with the centered 
time step. The Euler-backward scheme, however, gradu- 
ally reduces the transient part of the solution, and we are 
finally left with the stationary part. 

In the following, we shall first discuss some properties 
of the adjusted state in relation to  the initial perturbation. 
Later, we shall return to the adjustment process itself 
and try to  draw some useful conclusions concerning 
weather prediction models. 
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5. RELATION BETWEEN THE INITIAL DISTURBANCES 
AND THE NEW BALANCE 

The left-side of equation (9), multiplied by &e*k.v, is the 
adjusted geostrophic wind field for a component charac- 
terized by the vertical scale number n and the horizontal 
angular wave number k. The right-hand side of (9) shows 
that this new balance does not depend on the initial value 
of w. The analogy to w in the general case would be the 
irrotational part of the wind, and we are, therefore, led to 
the conclusion that if the nondivergent wind is in balance 
with the mass field, a false or missing irrotational wind 
would give rise to inertia-gravitational waves. However, 
if the wave energy is dispersed or damped, we would 
presumably be left with an irrotational wind field appro- 
priate to  the balance, while the nondivergent wind field 
and the mass field are unchanged. 

Returning to the right-hand side of equation (9), we 
observe that the ratio between f and u , , ~  determines which 
term is of most importance. If (Tn,k >j, the adjusted 
geopo tential corresponds closely to the initial wind through 
geostrophic wind relation, while the initial geopotential 
is of little importance. In  the opposite case when u n l t = j ,  
the geopo tential undergoes small changes, while the wind 
adjusts itself to the geopotential. Here u,,k depends on the 
horizontal and vertical scale of the perturbation, and also 
on the static stability, while j depends on the latitude. 
We may state as a general rule that height will tend to be 
adjusted to the wind for small horizontal scales and large 
vertical scales, and more so in low latitudes. The depen- 
dence on static stability is more complicated, but since c, 
tends to increase when the stability increases, the general 
rule is that high stability acts in the direction of adjusting 
the mass to the wind field. The considerations in this para- 
graph are in agreement with the results derived by 
Fjgrtoft. (1951). 

Washington’s crit ical wavelength (1964) corresponds to 
the case when ~:,~=2f2.  Benwell and Bretherton (1968) 
computed the values of c, for a 10-level model and found 
286, 111, 43.5, 26, and 16 m sec-l for the first five modes. 
From these values, we derive the critical wavelengths 18 
X 1 06, 7 X lo6, 2.7 X 1 OB, 1.6 N O 6 ,  and 1.0 X106 m, respectively 
(forf=lO-* sec-l). For a two-level model, we have found 
c1=297 m sec-l and c2=42 m sec-l, which gives 18.7X106 
m and 2.6 X lo6  m, respectively. The value corresponding 
to the first mode, the so-called external gravity mode, is 
close to the value given by Washington (1964) for the 
homogeneous case. 

Introducing finite differences in time will not change the 
considerations above, since the change would be only in 
the transient part of the solution. Space differences, how- 
ever, will have a significant influence on the smaller scales 
in the horizontal dimension. Since ~ 2 , , ~ ,  which occurs 
explicitly in (9), now has the value (f2+kJ2c;), we can 
discuss the effect of finite differences by comparing the 
magnitude of k and k’. These two quantities are tabulated 
in table 1. From this table we can see, for instance, that 
with a grid representation, a wave component three 
increments long will behave like a component more than 
seven increments long in case of continuous functions. 

TABLE 1.-The k=2?r/L and k’=Ay-‘sin (kAy) for diferent wave- 
lengths, L. 

~~ 

LlAy 2.0 2.5 3.0 3.5 4 5 6 7 8  10 

kAy 3.14 2.51 2.09 1.79 1.57 1.26 1.05 0.90 0.79 0.63 
k’Ay 0 0.59 0.87 0.97 1.00 0.95 0.87 0.78 0.71 0.59 

Therefore, there will be a tendency for the shortest 
components to behave like the longest, in the sense that 
the wind will tend to adjust itself to the geopotential. It 
should also be noted that because k’ is much less than k 
for the shortest components, the wind computed geo- 
strophically from the height becomes too weak. The 
combined effect on the shortest components is then seen 
to  be that there will be little change in the geopotential, 
while the wind becomes weak. 

In  the discussion above, we have treated k as a con- 
tinuous variable. It should be bornc in mind that it 
actually will take on only discrete values in a finite domain, 
and indeed a finite number of different values if a grid 
representation is considered. 

6. SUPPRESSION OF THE 
INERTIA-GRAVITATIONAL WAVES 

It was mentioned that a numerical model can approxi- 
mate a balanced state by dispersion of wave energy from 
a source area and/or by damping of the high-frequency 
oscillations. We shall now first discuss some aspects of the 
damping procedure, while the dispersion will be treated 
in the next section. 

The Euler-backward integration scheme was introduced 
earlier in this paper as a means to get an artificial damping 
of the time-dependent part of (6), and it was shown that 
the amplitudes of the waves were reduced by a factor R 
for each time step, where R is given by equation (18). 

Obviously, the damping depends on the frequency of 
the oscillation. The length of the time step, At, has to be 
so short that the component with the highest frequency is 
computationally stable, which means that (f2+k2&) (At)’  
is much less than 1 for most of the components. Therefore, 
according to equation (18), the rate of damping of a 
particular component is approximately proportional to the 
square of the frequency. This property of the damping 
becomes very important when general dynamic models of 
the atmosphere are considered, since then also the balanced 
state is transient, but with a relatively low frequency. As 
an example, let us take the two-level model referred to 
earlier. With L=3500 km and j=10-4 sec-l, we get 
a2=29.4X sec-’ for the external mode, and 1.57X10-8 
sec-2 for the internal, which shows that the external mode 
is damped nearly 20 times faster than the internal. 
Actually, since the period for the higher vertical modes 
approaches the period for the inertia wave (half a pendu- 
lum day), we will not have a good separation between the 
frequency of these modes and the frequency of the bal- 
anced state. Therefore, one cannot expect to obtain a good 
balance for a multilevel model in this way without also 
damping the fields one wants to retain. 

378-480 0 - 70 - 3 
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Space differencing in the y-direction will lead to lower 
frequency for the short wavelengths as already shown in 
section 3. Indeed, the wavelength 2Ay will have the pure 
inertial frequency. Therefore, the shortest scales will be 
adjusted only slowly to a balance by the damping device 
we have been discussing. 

Nitta and Hovermale (1967) showed that one forward 
time-step followed by one backward, using the Euler- 
backward scheme, brings the phase back to its initial 
value, while the amplitude of the waves is reduced by a 
factor R2. This result is easily derived from the solution we 
have given earlier for the Euler-backward scheme. Ob- 
viously, this is a simple method of improving the initial 
balance. The adjusted geostrophic balance will have the 
same dependence of thp initial fields as we have discussed 
earlier. Also, the rate at  which the adjustment takes place 
will have the same relation to the frequency as we have 
just found for the forward time integration. 

Some of the results we have deduced from the linear 
analyses are supported by experiments described by Dey 
(1969). Using a barotropic primitive equation model, and 
the 500-mb height and wind analyses, he ran forecasts up 
to  36 hr both with the centered time step and the Euler- 
backward. The former scheme produced a rough and 
"wiggly" forecast compared to the latter, obviously be- 
cause of inertia-gravitational waves introduced by poor 
initial balance. It could be shown, however, that in both 
cases the height was adjusted to  the wind for the large- 
scale feature. The same also occurred when running the 
model back and forth, using a damping finite-difference 
scheme. Similar experiments have been reported by Nitta 
(1968). 

7. DISPERSION OF WAVE ENERGY 

In  case of a continuous spectrum, the propagation of 
wave energy takes place with the group velocity, defined 
by 

cph>/ak (20) 

where cph is the phase velocity. In  our case, the spectrum 
is not continuous, and the above formula should be 
expressed in terms of differences instead of differentials. 
However, this would make little difference if we consider 
waves that are considerably smaller than the dimension 
of the domain, and we shall, .therefore, use the above 
formula, since it is simpler for our purpose. 

The pure gravitational waves are nondispersive, since 
the phase velocity does not depend on the wave number. 
However, the combined inertia-gravitational waves are 
dispersive, a fact which has been pointed out also by 
Washington (1964) and others. Of considerable interest 
from our point of view is that in case of a grid-point 
representation also the pure gravitational wave is dis- 
persive. In the following, we shall try to show what 
significance this might have for numerical models. 

I I ,  

. .  

TABLE 2.-Reduction in group velocity when space digerences are used 

LlAY 2 2.5 3 3.5 4 5 6 7 8 10 

K 0 -0.19 -0.21 -0.12 0 0.23 0.41 0.54 0.64 0.76 

From equations (5 )  and (20), we easily derive a formula 
for the group velocity, which for our purpose may be 
written conveniently as 

where 

Cph= (c",y/k2)''2. (22) 

This shows that if cn is large, which especially is the case 
for the external mode, c,, is approximately equal to cn and, 
therefore, also large. If c, is small, the group velocity is 
still smaller, especially for long waves in high and middle 
la ti tudes. 

If spcce differences are taken into account, the formula 
for the group velocity given in equation (21) will contain 
also a factor K=sin(2kAy)/2kAy, and in the equation (22) 
k must be changed to k'. Some values of K are given in 
table 2. Obviously, the group velocity for the shorter 
waves is greatly reduced where a grid representation is 
applied. The circumstance that K becomes negative for 
wavelengths between 2Ay and 4Ay is of no special import- 
ance here, since there are two waves which move in 
opposite directions. 

If time differences are also taken into account, one gets 
still another factor on the right-hand side of equation (21). 
In  case of the centered time step, this factor turns out to 
be (1 + (Cp&)2)-1'2 and for the Euler-backward time 

wave components, cphAt K1;  and, therefore, the time 
differencing will change the group velocity very little. 

An implication for weather prediction models is that if 
the initial data in a limited horizontal area gives rise to 
waves with small group velocity, the wave energy will 
disperse slowly, and the adjustment accordingly will be 
slow. We shall have the opportunity to return to  this 
point in the next section. 

Step (1 f (c,,At)') * (1 - (CP&)' + ( ~ ~ . A t ) ~ ) - l .  For most 

8. A NUMERICAL EXPERIMENT 

In this last section, we shall describe an experiment 
illustrating some of the conclusions in the previous sections. 
A two-level primitive equation model was used, and initial 
data were operationally analyzed winds and heights for 
the 300- and 700-mb surface and sea-level pressure. 
Using the Euler-backward scheme, a 24-hr forecast was 
computed. At that time, the noise introduced initially by 
poorly balanced data had been damped, and the model 
seemed to be in a fairly good state of balance. This 
prognosis was then used as initial data for two new 24-hr 
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FIGURE 1.-RMS of o (heavy lines) and of sea-level pressure 
tendencies (thin lines) for two forecasts, one (continuous lines) 
without initial divergence, the other (broken lines) with initial 
divergence. Units on the abscissa are hours forecast time, on the 
ordinate mb/sec for w and 2X 10-2 mb/lO min for the pressure 
tendencies. 

integrations. I n  the one case, the data were used without 
changes; in the other case, the irrotational part of the wind 
was removed. In  both cases, the centered time step was 
applied. 

The graphs in figure 1 show the time change in the RMS 
(root mean square) of (J (heavy lines) and the RMS of 
the surface pressure tendencies (thin lines). The broken 
lines correspond to the case with the divergence included 
initially. The RMS was computed a t  each time step from 
the values in the interior grid points of the entire domain. 
Obviously, the integration with nondivergent initial values 
is less in balance than the other, measured by the general 
level of high-frequency noise. This is particularly true of 
the pressure tendencies, where the mean value is consider- 
ably higher in the nondivergent case. The oscillations that 
show up in the graphs must be caused by some dominant 
scale with a characteris tic frequency. 

The model, which has been referred to  earlier, is capable 
of producing two vertical modes, the external and the 
first internal ones. From the solution (6) for w and the 
general properties of the eigenfunctions, &, it is easily 
concluded that for a characteristic value of the mass 
perturbation, the higher vertical modes have compara- 
tively larger values of the vertical velocity associated with 
them. For this reason, the graphs of w show mostly the 
effect of the internal mode, while the external mode shows 
up more clearly in the surface pressure tendencies. 

In  figure 1, we observe that the nondivergent case 
shows an oscillation of large amplitude around a mean 
value which is close to the mean value for the divergent 
case. It takes the model close to 12 hr to  reach the first 
minimum, and if we take this to be the characteristic 
period, we can compute a characteristic wavelength from 
a formula similar to (5) : 

4 r 2  T-'= j'+4r2(L;'+ L i z )  c2 

where L, and L, are the wavelengths in the z- and y- 
directions, respectively, T the period, and c the speed of 
the pure gravitational wave. For the model used, c has 
been computed by linear analyses to  be 297 m sec-' and 
42 m sec-' for the external and the internal modes, 
respectively (using values from the US. Standard At- 
mosphere). Assuming that the oscillation just mentioned 
is the internal mode, that L,=L,, and thatf=10-4 sec-', 
one gets L=3500 km. 

Comparing the two graphs for the sea-level pressure 
tendencies, we see that we here have introduced oscilla- 
tions of much shorter period by removing the divergence 
initially. It must be noted, however, that the pressure 
tendencies associated with a certain wave component 
oscillates around zero as the equilibrium value, while w 
oscillates around a nonzero value (this will become evident 
later when we discuss the actual w fields). For this reason, 
the RMS of the pressure tendencies more likely will 
show two maxima and two minima during a period. An 
inspection of the curve and also the pressure variations 
in a number of grid points show a characteristic period of 
about 3 hr for this rapid oscillation. Assuming that this 
is the external mode, we get L = 4500 km. This is a 
somewhat larger value than the one derived above. 
However, the solutions for o and t$ in equations (6) show 
that a shorter horizontal scale has comparatively larger 
values of the vertical velocity associated with it, since 
u,&,k is larger, and that, therefore, a smaller scale will 
dominate in the RMS of w ,  other conditions being equal. 

We therefore feel justified to assume that it is the same 
horizontal scales which have been excited in both cases. 
We may also note that this is ij typical scale for the extra- 
tropical cyclones. The oscillations must have been started 
because the irrotational wind field, which is a necessary 
part of the balance, is removed. Furthermore, since the 
divergence in the balanced state is tied to the nondivergent 
wind field, we must expect the oscillation to have the same 
scale as the nondivergent wind. 

It may be interesting to  see how well the oscillations in 
w ,  which we have described, show up also on the maps of 
the prognostic fields. A section of such maps is shown in 
figures 2A to 2D, where lines are drawn for w and 700-mb 
contours. Figure 2A shows the w field derived from the 
irrotational wind field removed initially, and 2B, 2C, and 
2D, the 6-, 12-, and 18-hr forecasts. The vertical velocity, 
being zero initially, increases to comparatively large 
values at  6 hr, decreases again to very small values, and 
then increases again. Apart from this oscillation, the 
areas with upward and downward motion change very 
slowly with time. This must be attributed to the rather 
small group velocity for this scale-only 18 m sec-' 
according to the formulas derived earlier. Of course, 
eventually the wave energy will disperse. 

It may also be mentioned that as far as the nondiver- 
gent part of the wind is concerned, there are no significant 
differences between the two forecasts. This is in agreement 
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with the results derived in section 5 about the effect of the 
irrotational wind on the final adjusted state. 

9. CONCLUDING REMARKS 
The discussion in this paper has centered around a 

simple linear model of the atmosphere. For this model, we 
have been able to derive a solution to the problem of how 
the model adjusts itself to a balanced state. Some aspects 
of this solution are assumed to be generally true for 
primitive equation prediction models; for instance, the 
final balanced state can be determined from the initial 
values of the variables, and the difference between this 
balanced state and the initial values may be expressed as a 
series of inertia-gravitational wave components, corre- 
sponding to the free modes of oscillation in the model, 
If the model shall approach the balanced state, it is 
necessary that these waves are dispersed, dissipated, and/ 
or damped by some other means. As we have seen the 
damping brought about by the device we have focused 
the attention on, the Euler-backward integration scheme 
affects mostly the highest frequencies, which are chiefly 
associated with the external gravitational model. A 
barotropic primitive equation model has only one gravita- 
tional mode, with a frequency comparable to the external 
mode in baroclinic models, and consequently a rapid 
adjustment toward the balance. I n  a barotropic model, 
this is also the case for the part of the initial unbalance 
which can be expressed in terms of the first vertical mode 
in the expansion we have used. The higher vertical modes, 
however, are adjusted rather slowly to a balanced state. 
Furthermore, since the group velocity is small for these 
modes, the wave energy disperses only slowly. As we have 
seen, this is especially crucial for the vertical velocity, 
and therefore for the simulation of the condensation 
processes. 

As we stated above, the new balance depends on the 
initial values of the variables. I n  the barotropic model, 
the balance is mostly determined by the initial wind. 
Again, in a baroclinic model, we must consider the differ- 
ent vertical modes separately. That part of the initial 
values that excites the external mode will behave like the 
barotropic case. For the higher vertical modes, however, 
we must also consider the horizontal scale, since i t  turns 
out that for large wavelength the wind tends to be ad- 
justed to the height in middle and high latitudes, 
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